Dresden: Rekonfigurierbare Germanium-Transistoren für mehr Energieeffizienz

Wissenschaftler des Nanoelectronic Materials Laboratory (NaMLab gGmbH) und des Exzellenzclusters "Center for Advancing Electronics Dresden (cfaed)" an der Technischen Universität Dresden haben den weltweit ersten Transistor aus Germanium realisiert, der sich elektrisch zwischen Elektronen (n)- und Löcherleitung (p) umprogrammieren lässt. Aufgrund der geringeren Bandlücke gegenüber Silizium können Transistoren aus Germanium mit niedriger Einsatzspannung betrieben werden. Daher ermöglichen sie einen wesentlich energiesparenderen Betrieb als vergleichbare Transistoren aus Silizium.

Zudem ist der realisierte Transistor aus Germanium abhängig von den angelegten Spannungen sowohl mit Elektronen- als auch mit Löcherleitung (rekonfigurierbar) einsetzbar. Damit lassen sich elektronische Schaltungen bei gleicher Funktionalität mit einer geringeren Anzahl an Transistoren im Vergleich zu der derzeitig angewandten CMOS Technologie realisieren.

Die heutige digitale Elektronik besteht zum überwiegenden Teil aus integrierten Schaltungen. Seit mehr als 40 Jahren werden die in den Schaltungen enthaltenen Transistoren schrittweise verkleinert, um die Rechenleistung und Schaltgeschwindigkeit zu erhöhen. Der aktuelle Trend geht dabei dahin, in den gängigen Transistoren Materialien mit höherer Ladungsträgerbeweglichkeit als Silizium einzusetzen - wie eben Germanium oder auch Indium-Arsenid. Einem Einsatz dieser Materialien in der Praxis steht aber derzeit unter anderem ein signifikant erhöhter Leckstrom und die damit verbundene höhere statische Verlustleistung im Auszustand entgegen, die aus den geringen Bandabständen der Werkstoffe resultiert. Dem Wissenschaftler-Team um Jens Trommer und Dr. Walter Weber von der NaMLab gGmbH ist es jetzt in Kooperation mit dem cfaed gelungen, Transistoren aus Germanium-Nanodrähten zu entwickeln, die durch ein spezielles Design mit mehreren unabhängigen Elektroden die störenden Leckströme entlang des Kanals unterdrücken. Dr. Weber, der beim cfaed die Nanodrähte-Forschungsgruppe leitet, erklärt: „Die erreichten Ergebnisse demonstrieren erstmalig gleichzeitig niedrige Einsatzspannungen und geringe Leckströme, sowie den damit einhergehenden reduzierten Energieverbrauch, welcher eine Anwendung des neuen Transistors in energieeffizienten Schaltungen ermöglicht.“ 

Die Arbeiten wurden durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Projektes "ReproNano" gefördert. Die NaMLab gGmbH wird eine mögliche Umsetzung in zukünftige Produkte sowie weiteren Forschungs- und Entwicklungs-Aktivitäten in diesem Bereich mit ihren Industriepartnern anstreben.

Über NaMLab

Die „Nanoelectronics Materials Laboratory gGmbH“ (NaMLab) wurde im July 2006 gegründet. NaMLab ist ein Tochterunternehmen und An-Institut der TU Dresden. NaMLab betreibt am Campus der TU Dresden ein Forschungsgebäude mit vier Laborräumen, einem Reinraumlabor und einem Bürobereich für über 40 Mitarbeiter. NaMLab betreibt Materialforschung zur Anwendung in nanoelektronischen Bauelementen und arbeitet eng mit den Instituten der TU Dresden zusammen.

Über cfaed

Das Center for Advancing Electronics Dresden (cfaed) an der TU Dresden entstand im Rahmen der Exzellenzinitiative des Bundes und der Länder und wird von der Deutschen Forschungsgemeinschaft (DFG) von 2012 bis 2017 mit rund 34 Millionen Euro gefördert. Neben der Sprecheruniversität Technische Universität Dresden gehören zu dem Forschungsverband zehn sächsische Partnerinstitute, darunter die Technische Universität Chemnitz sowie zwei Max-Planck-Institute, zwei Fraunhofer-Institute, zwei Leibniz-Institute, das Helmholtz-Zentrum Dresden-Rossendorf, die NaMLab gGmbH und das KSI Meinsberg.

Als eine zentrale wissenschaftliche Einrichtung der TU Dresden vereint cfaed über 300 Wissenschaftler auf neun verschiedenen Forschungspfaden. Sie verwenden dabei neuartige Materialien wie Silizium-Nanodrähte, Kohlenstoff-Nanoröhren oder Polymere. Außerdem entwickeln sie völlig neue Konzepte wie Herstellungsverfahren durch selbstassemblierende Strukturen, bspw. DNA-Origami. Darüber hinaus werden biologische Kommunikationssysteme betrachtet, um Inspirationen aus der Natur für die Technik zu nutzen. Dieser weltweit einzigartige Ansatz vereint somit die erkenntnisgetriebenen Naturwissenschaften und die innovationsorientierten Ingenieurwissenschaften zu einer interdisziplinären Forschungsplattform in Sachsen.